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The kinetics of spinodal decomposition of binary alloys in case of finite grain size and slow
grain growth is studied by applying the Monte-Carlo method where a coupled algorithm of
the spin-exchange Ising model and Q-state Potts model operates. The anisotropic energy of
grain boundaries is incorporated by imposing a Potts spin lattice on the Ising crystal. We
simulate the phase separation where the grain size is comparable with the spinodal length
on the order of magnitude. It is revealed that the grain boundaries of low excess energy as
rapid channel enhance the solute diffusion, whereas those boundaries of high excess
energy hinder the solute diffusion. Depending on the system supersaturation, phase
aggregation preferred at the grain boundaries is demonstrated. The spinodal kinetics is
modulated by the grain growth so that the Lifshitz-Slyozov-Wagner law may no longer be
applicable in spite of the scaling law roughly holds in present system. C© 2000 Kluwer
Academic Publishers

1. Introduction
When a concentrated binary alloy is submitted to a
circumstance below the spinodal line in temperature-
composition phase diagram, it will finally decompose
into separated two-phase structure where the solute-
rich and solute-depleted phases interconnect to each
other and distribute randomly. This problem represents
a long time interested topic in condensed matters and
materials science because it is one of the fundamental
phenomena in processing many technologically impor-
tant materials [1, 2]. This process is named as spinodal
decomposition [3]. There are piled up a lot of publica-
tions on this topic, either on the early stage’s events or
the late stage’s evolution. The effects of elastic strain
and nonlinear fluctuations on the spinodal patterns have
repeatedly been demonstrated [4–6].

It is now well known that the spinodal decomposition
initiates from non-local composition fluctuations that
develop irreversibly in both amplitude and wavelength.
The late stage’s events may incorporate strong nonlin-
ear effects in spite of the dominant linear characters
of the early stage process [3]. It bases on many reasons
to pay our attention to the late stage since most materials
in service exhibit the late stage’s microstructure. The

Cahn-Hilliard (CH) theory [7] and its improved ver-
sions (e.g. the Langer-Bar-Miller (LBM) model [8]) are
no longer applicable to the late stage, whereas Monte-
Carlo (MC) simulations improve significantly our un-
derstanding of the problem on the other hand [9–11]. It
is established that the late stage’ kinetics of decomposi-
tion (coarsening of the decomposed structure) still fol-
lows the Lifshitz-Slyozov-Wagner (LSW) law as long
as the alloy exhibits short range interaction, no mat-
ter what the alloy is diluted or concentrated [11, 12].
Metallic alloys typically show short range of interac-
tion. The other prominent character of the late stage
coarsening comes to the scaling concept that all spatial-
correlation properties after being scaled with the char-
acteristic lengthλof the microstructure hold unchanged
with time, leavingλ the unique parameter of time de-
pendence [12]. Here,λ may be defined as the modu-
lating wavelength of the decomposed microstructure,
which typically ranges from several nanometers to one
micrometer.

Up to date, the conventional theories of spinodal de-
composition deal with homogeneous systems where no
high dimensional defect like grain boundary is involved
[3]. Nevertheless, real materials are polycrystalline in
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most cases and the grain boundaries (GBs) may impose
somehow influence on the spinodal process. It is then
expected that the excess boundary energy makes the
GBs play as sinks of solute and attract aggregation of
solute-rich phase there. If one deals with an alloy of
grain sizeRÀ λ, i.e. coarse-grained alloy, the effect
of the GBs may be negligible in spite of grain bound-
ary precipitation and segregation may change the prop-
erty of the decomposed microstructures [13]. This ef-
fect can no longer be underestimated as one deals with
nano-structured materials whereR becomes compara-
ble withλ on the order of magnitude. We name this type
of materials as fine-grained alloys. On the other hand,
grain growth becomes a prominent sequence for the
nano-sized and fine-grained materials. This introduces
to the microstructure, besidesλ, second characteristic
length R which is also time dependent. A coupling of
the two time dependent scales is then expected.

In this paper, we will study the spinodal decomposi-
tion in the concentrated fine-grained alloys by applying
the MC method. Here grain sizeR is larger thanλ but
keeps the order of magnitude comparable to the latter.
We assume that grain growth is a much slower sequence
than phase separation. This assumption simulates the
real events in most materials. We will see how kinet-
ics and scaling of the late stage’s decomposition are
affected by the excess boundary energy and the slow
grain growth.

We first give a brief description of our model and
procedure of the MC simulation and then a detailed
presentation of our simulated results. A summary is
made finally.

2. Model and procedure of simulation
We start from a two-dimensional squaredL × L lattice
with periodic boundary conditions. Such a symmetry
restricts any lattice reconstruction during the deposi-
tion. Therefore, we deal only with diffusion-dominant
sequences in our simulation. The binary alloy is sim-
ulated by the spin-exchange Ising lattice where each
site is occupied with either spinSi = 0 for solventA or
Si = 1 for soluteB. The alloy composition is defined as
C0= NB/(NA+ NB) whereNA and NB are the num-
bers of A and B in the lattice, respectively. Because
N= NA+ NB keeps constant, the number of spin states
of the lattice satisfies the conservation law. The conven-
tional spin-exchange kinetics according to the Metropo-
lis algorithm [14] is applied to simulate species diffu-
sion in the lattice. In the lattice is also imposed at each
site the second spin parameterq which represents the
ordering degeneracy of the lattice, i.e. grains. We apply
the Q-state Potts model [15] to simulate grain growth
through migration of the GBs. Upon each site is im-
posed one of theQ multi-spin states (q= 1, 2, . . . , Q).
The Potts state of any site within one grain represents
its orientation. If two nearest-neighboring sites have
different Q-states, it means that they are no the GBs.
The high energy state of the sites on the GBs acts as
the driving force of boundary migration and then grain
growth. Any site on the GBs may have its Potts spin
be replaced by one of its neighbors. Those sites on the
GBs show high probability of spin replacement as long

as this replacement results in decaying of the system
energy.

We suppose that the Ising energy between two neigh-
boring sites with different Potts spins has no difference
from that between two sites of the same Potts spin. Re-
fer to our previous work [16], we write the Hamiltonian
of the lattice,H , as:

H =
∑
〈i j 〉

EI + EP

= −
[
φAA

∑
〈i j 〉

(1− Si )(1− Sj )+ φB B

∑
〈i j 〉

Si Sj

+φAB

∑
〈i j 〉

Si (1− Sj )+ (1− Si )Sj

]
− JAA

∑
〈i j 〉

(1− Si )(1− Sj )[(1− fAA)

+ fAAδKr(α, β)]

− JB B

∑
〈i j 〉

Si Sj [(1− fB B)+ fB BδKr(α, β)]

− JAB

∑
〈i j 〉

[Si (1− Sj )+ (1− Si )Sj ][(1 − fAB)

+ fABδKr(α, β)] (1)

whereEI andEP represent the Ising energy and Potts
energy at sitei , respectively;φmn (m, n= A, B) de-
notes the Ising energy of the nearest neighbouringm-n
spin-pair;〈i j 〉 represents that over nearest neighbours
is summed once;Jmn(≥0) is the interaction factor asso-
ciated with the Potts spin-pair between the Ising spins
m andn; fmn is a factor to scale the Potts interaction
between the Ising spinsm andn, fmn= 0 represents no
Potts spin dependence of the Ising pairm-n; δKr is the
Kroneckerδ function which is defined as:

δKr = b1+ (Q− 1)e−α × e−βc
Q

(2a)

where e−α(α= 0, 1, . . . , Q− 1) are Q unit vectors
pointing in theQ symmetric directions of a hypertetra-
hedron inQ− 1 dimensions. In the present simulation,
however, we apply the planar Potts model instead of
the standard Potts model [15] since our simulation is
restricted in two-dimensional space. For the former,δKr
(we still use this symbol) should be rewritten as:

δKr = cos

(
2π
α − β

Q

)
(2b)

In the MC simulation, we imposeφmm= 0 andφAB< 0,
indicating no interaction between the like-pair of the
Ising spins but repulsive force between the unlike-
pair of the Ising spins, respectively. This leads to the
spinodal aggregation of the like Ising spins. We de-
fine an effective interaction factorφ= (φAA+φB B)/
2−φAB=−φAB. The alloy keeps homogeneous as
temperatureT > Tc and decomposes into two phases
asT < Tc no matter with the Potts interaction, where
Tc is the critical point of the Ising lattice defined by
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TABLE I The system parameters of interaction for simulations

φAA φB B T/Tc Jmn/kT fAA fB B fAB

0.00 0.00 2.00–0.30 1.20 1.00 0.00 0.50

kTc/φ∼ 1.13 andk is the Boltzmann constant. We
also assume identicalJmn for all Potts spin-pairs and
JmnÀφmm= 0, so that the Potts sequence achieves
a much lower probability than the Ising one. This
yields a slow grain growth in relative to the spin-
odal decomposition. In order to achieve grain bound-
ary aggregation, we takefB B= 0.0 and fAA= 1.0 and
fAB= ( fAA+ fB B)/2. This choice permitsB−B pairs
to stick preferably at the GBs of high excess energy
rather than inside the grains.

A detailed description of the MC algorithm was pre-
sented previously [14]. The simulation is performed
according to following procedure: for a given set of
system parameters a lattice with random spin config-
uration is constructed. For a site chosen randomly, its
EI andEP are calculated and then the probability that
this site chooses either an Ising event or a Potts event
is given by a partition betweenEI and EP. For an
Ising event, the spin-exchange is done according to
the improved Metropolis algorithm [16, 17]. The Potts
spin-replacement is approved by the same algorithm.
This completes a circle of simulation and then a new
sequence starts. The time unit of the simulation cir-
cles is mcs. One mcs representsL × L circles com-
pleted. We simulate one system by four runs starting
from different seeds of random number generation and
take the average values of the simulated data for pre-
sentation.

For the present simulation, we chooseL = 128,
Q= 24, andC0= 0.45 at which a typical spinodal
decomposition is expected. The chosen lattice is big
enough to get good statistics, with the solute concen-
trated up to 45%. The initial grain size ranges from 15
to 50 lattice units, which is several times the maximum
value ofλ within the time limit reached in our simula-
tions. The other parameters of the alloy are listed in Ta-
ble I. The simulation covers fromT/Tc= 1.15 to deep
supersaturated state whereT/Tc= 0.30. Jmn/kT=
1.20 is much bigger thanφmm= 0.0, predicting that the
Potts event is favored with a probability of only∼1%
in relative to the Ising one. Therefore, spinodal decom-
position proceeds much faster than the grain growth.

3. Results of simulation
We first look at the lattice configurations at several times
for T/Tc= 0.80, at which the maximum effect of the
GBs on the decomposition is found. We simulate the
homogeneous decomposition in a reference alloy where
all parameters keep the same as the present alloy ex-
cept that no grain boundary aggregation is preferred,
i.e. fAA= fB B= fAB= 1.0. The data are plotted in left
column of Fig. 1 for the reference alloy and right col-
umn for the present alloy. Here the solid squared dots
represent the GBs and the open circle dots for solute
B, leaving the empty area for solventA. Although the

Figure 1 The grain boundary configurations and solute distributions at
several times forT/Tc= 0.80. The left column is for the referenced alloy
where fmn= 1.0 and the right column is for present alloy.

GBs in nano-materials may cover several atomic layers
in thickness and fluctuate somehow, we still plot them
with two lattice units in thickness.

From Fig. 1 it is clearly shown that immediately
after the beginning the randomly distributed species
start to aggregate intoB-rich and A-rich regions. At
t = 50 mcs, the two-phase interconnected pattern has
almost been established. The early stage of spinodal
decomposition develops so fast that the period after
t = 50 mcs is covered already with coarsening of the
microstructure. The phase aggregates show roughly
isotropic pattern in spite of the interconnectivity. The
small aggregates either shrink or stick to the neigh-
bor big aggregates in compensation with growth of the
big ones. The interconnectivity of the microstructure
is enhanced through the coarsening. These show to be
normal phenomena in spinodal decomposition.

In parallel to the decomposition, one also observes
slow grain growth through migration of the GBs. Some
small grains are swallowed by the neighboring big ones.
The normal features of grain growth are shown [18].

In contrast to the left column of Fig. 1, however,
significant effect of the GBs on the spinodal pattern
for present alloy can be identified from the right col-
umn of Fig. 1. The decomposed structure of the present
alloy achieves higher rate of coarsening than the ho-
mogeneous case. Strong grain boundary aggregation of
B-rich phase is revealed. In proceeding with time, more
and moreB-rich aggregates inside grains shrink and
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dissolve through solute diffusion toward the neighbor
GBs. Att = 2400 mcs, one finds that the grain boundary
aggregation tends to saturation. Only one to two aggre-
gates remain inside some big grains, leaving other small
grains out of aggregate. This effect leads to stripe-like
shape of theB-rich phase around the GBs. Secondly, the
aggregation at the GBs shows to be non-uniform. While
most GBs are completely covered withB-rich stripes,
some boundaries remain unoccupied or only partially
occupied with soluteB. This is attributed to the effect
of anisotropic boundary energy that some GBs exhibit
high excess energy whereas the others remain low or
even close to zero. Definitely, theB-rich aggregates
prefer to occupy the GBs of high excess energy. In ad-
dition, one finds that the GBs for present alloy show
more irregular shape in comparison with those in the
referenced alloy, whereas the GBs in the latter case are
smooth and straight to some extent but also migrate
more rapidly than the former case. The pinning effect
of the GBs by the aggregates there is obviously respon-
sible for these phenomena.

Furthermore, the effect of the GBs as a channel of so-
lute diffusion is demonstrated here, no matter with the
boundary aggregation preferred or not. Note here that
the GBs are the most favored sites to be chosen for ei-
ther Ising events or Potts sequence. We choose a scaling
factor of this effect which is defined asσ = NIS/NGB,
whereNIS is number of the chosen species (sites) which
have their destination on the GBs via the Ising spin-
exchange operation in one mcs andNGB is the site
number on the GBs. It is easily inferred thatσ ≈ 1.0
if no grain boundary aggregation is preferred. The data
for T/Tc= 0.80 are plotted in Fig. 2. At the beginning,
σ achieves a value much bigger than 1.0 and then de-
cays down to a lower value. Such a decaying can be
fitted by an exponential decaying law and the underly-
ing mechanism is the solute aggregation on the GBs.
In spite of this decaying,σ >1.0 overall time period

Figure 2 The scaling factorσ as a function of time for both the reference
alloy and present one atT/Tc= 0.80.

is established, approving the GBs as a rapid channel
of diffusion. However, referring to the local GBs, one
identifies various individuals. Those GBs of high ex-
cess energy prefer to absorb the as many solute species
as possible and finally trap them locally. At last, they
play a role in hindering the solute diffusion, or in other
words, they are the sinks of solutes. In contrast to this,
those GBs of low and mediate excess energy becomes
the rapid channels of solute diffusion. They absorb as
many solutes as possible and transfer them toward the
neighboring GBs of high excess energy.

Obviously, in our model one does not deal with real
defect states at the GBs but approaches the defects by
the high energy state. A relaxation of the excess bound-
ary energy via the boundary aggregation damages the
diffusion channel effect of the GBs. As dealing with the
homogeneous spinodal sequence, we also findσ À 1
and its decaying becomes much slower, as shown also
in Fig. 2. This gives a direct approving of the GBs’
function as a rapid channel of diffusion.

On the other hand, we develop an occupation factor
0= (CGB−C0)/CGB to characterize the grain bound-
ary aggregation, whereCGB is the solute concentration
at the GBs. Clearly,0≈ 0.0 if no preferred boundary
aggregation performs,0= 1−C0 if all GBs are cov-
ered with the solute. We evaluate0 as a function of
T/Tc and time t , as plotted in Fig. 3, whereT/Tc
ranges from 2.00 to 0.30. For a fixedT/Tc, 0 grows
rapidly from zero and then tends to be saturated. The
rapid growth period covers the initial 500 mcs, indi-
cating the boundary aggregation reaches a saturating
state. AtT/Tc= 0.80, 0 reaches up to 0.46 after the
initial growth. This value is not far from the maximum
value, 0.55 for the present system, demonstrating seri-
ous boundary aggregation of the solute-rich phase.

As probing0 as a function ofT/Tc at any time when
a saturated0 is reached, one finds a single peaked
pattern. When the peak positions atT/Tc= 0.80,
much lower values of0 are evaluated at either deep
or shallow supersaturation. For instance, toward the
late stage0≈ 0.15 for T/Tc= 1.10 and0≈ 0.20 for
T/Tc= 0.30. These data compromise direct evidence
that the grain boundary aggregation may achieve its
maximal at a moderate supersaturation. Either low

Figure 3 The occupation factor0 as a function ofT/Tc andt for present
alloy.
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Figure 4 The grain boundary configurations and solute distributions at
two times for present alloy. The left column is forT/Tc= 1.00 and the
right one is forT/Tc= 0.30.

or high supersaturated alloy has its decomposed mi-
crostructure weakly affected by the GBs. For further
illustration, we present in Fig. 4 the simulated lat-
tice configurations forT/Tc= 1.00 (left column)
and T/Tc= 0.30 (right column) att = 50 mcs and
2400 mcs, respectively. When the decomposed alloy
shows diffusive two-phase pattern at low supersatura-
tion, a roughly uniform distributed and fine two-phase
morphology is exhibited for the case of high super-
saturation. It is easily understood that on one hand a
low supersaturation images strong thermal fluctuations
which weaken stability of the solute on the GBs, on
the other hand a deep supersaturation stabilizes the fine
decomposed structure.

Now let us focus on the kinetics of decomposition
for T/Tc= 0.80. In Fig. 5a and b are plotted the eval-
uated spatial correlation function,ρ(r, t), for the ref-
erence alloy and present one, respectively. Because
the alloy is concentrated,ρ(r ) shows roughly regu-
lar wave-pocket pattern. The wavelength is modulated
in proceeding with time through either dissolution or
amplitude growth of alternative wave-pockets. Com-
paring Fig. 5a to b one observes strong modulation of
the present system in relation to the reference one, em-
phasizing again the effect of the GBs on the decomposi-
tion. We choose the first zero-passing point ofρ(r ), Rc,
as a characteristic scale of the decomposed two-phase
structure and plotRc as a function of time, as shown
in Fig. 6a, where the counterpart data from the refer-
ence system are also inserted. First, it is confirmed once
more that the GBs accelerates coarsening of the two-
phase structure. Secondly, one fits the data according
to the LSW law of following form [11, 12]:

Rc = R0+ a× tm (3)

whereR0∼ 2.0 for C0= 0.45, a is a positive constant
andm is the growth exponent. The best fitting shows
m= 0.33, equals to the LSW exponent, for the reference

Figure 5 The spatial correlation functionρ(r, t) for present alloy at
T/Tc= 0.80.

alloy. However, for present alloy one getsm= 0.41, de-
viating from the LSW exponent. This fact reveals that
the LSW scheme is no longer applicable in predict-
ing the spinodal kinetics for the fine-grained alloys at
the moderate supersaturation, in spite of this deviation
may not be so big. Nevertheless, the evaluated expo-
nent recovers back to the LSW exponent as long as the
supersaturation gets to either low or high level. That
the LSW law loses its validity in the present alloy is
expected to result from two effects. One is the solute-
rich aggregation on the GBs and secondly, there is also
observed slow grain growth. Please note the fact that
in Potts lattice the number of spin states are not con-
served, which activates an exponent of grain growth
higher than that for coarsening of the two-phase struc-
ture. We have reason to believe that grain growth in
parallel to phase decomposition would definitely make
exponentm higher than 1/3 as long as there exists cou-
pling between the Ising lattice and Potts one.

Finally, we look at the scaling of correlation function
ρ(r, t). As shown in Fig. 6b, the curves at several times
are plotted in the same diagram, subjected to scaling
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Figure 6 The characteristic scaleRc as a function of time for the refer-
enced alloy and present one atT/Tc= 0.80 (a) and scaling of the data
for present alloy (b).

transformF(r/Rc)= ρ(r/Rc, t). It is quite clear that the
curves aftert = 200 mcs have their parts inside the third
zero-crossing point fall on one specific curve within the
statistical uncertainty, demonstrating the scaling law is
satisfied. However, it should be noted that far away from
the third zero-crossing point one observes scattering
of the data. The bad statistics due to the finite lattice
dimension may be responsive for the scattering.

As we reported previously, the scaling law may be
broken for the diluted alloys where all solutes sink onto
the GBs so that the diffusion-limited process loses its
domination over to the grain-growth-controlled precip-
itation during the decomposition. In fact, the scaling
concept reflects the self-similarity of the decomposed
structure via the diffusion-limited aggregation mecha-
nism. In contrast to this, in concentrated alloys the so-
lute number is far over the GBs site number. Note that
the system we are dealing with exhibits short range of
interaction. Therefore, the solute except from those hav-
ing sank onto the GBs still aggregate dominantly via the
diffusion-limited steps. This seems to be the fundamen-
tal mechanism of the scaling behavior.

4. Conclusion
In conclusion, we have presented a Monte-Carlo sim-
ulation of the effect of grain boundaries on spinodal
decomposition in fine-grained binary alloys where the
grain size is comparable to the spinodal length. The
simulated results have established the grain boundaries
as the preferred channels of solute diffusion. Strong
grain boundary aggregation of the solute-rich phase has
been revealed through our simulation. We have demon-
strated that the spinodal decomposition is accelerated
by the preferred grain boundary aggregation and thus
the LSW law no longer appears to be a valid description
of the kinetics. The scaling property of the decomposed
microstructure has been found to be held roughly.
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